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Abstract: Large population-based studies investigating the association of physical activity (PA)
with the metabolite signature contribute significantly to the understanding of the effects of PA on
metabolic pathways associated with the risk of type 2 diabetes. Our study included 8749 Finnish
men without diabetes at baseline recruited from the Metabolic Syndrome in Men (METSIM) co-
hort. We used a questionnaire to measure leisure-time PA. Metabolites were measured in 7271 men
as a part of Metabolon’s untargeted Discovery HD4 platform using ultrahigh-performance liquid
chromatography–tandem mass spectrometry. We found 198 metabolites significantly associated with
PA. Several of these metabolites were novel including especially steroids, amino acids, imidazoles,
carboxylic acids, and hydroxy acids. Increased PA was significantly associated with high levels of
choline plasmalogens, lysophosphatidylcholines, polyunsaturated fatty acids, carotenoids, long chain
acylcarnitines, imidazoles, bilirubins, aryl sulfates, hydroxy acids, indolepropionate, and indolelac-
tate. Several of these metabolites have been previously associated with a decreased risk of type 2
diabetes and with a healthy diet. Our population-based study shows that the metabolite signature
of increased PA includes multiple metabolic pathways and is associated with better adherence to a
healthy lifestyle.

Keywords: physical activity; type 2 diabetes; insulin sensitivity; insulin secretion; metabolites;
healthy diet

1. Introduction

Type 2 diabetes has reached epidemic dimensions worldwide [1]. Obesity and lack of
physical activity (PA) are important risk factors for the development of type 2 diabetes [2].
Lifestyle intervention studies have shown that PA and a healthy diet prevent the conversion
to type 2 diabetes in individuals with high risk of this disease [3]. Similarly, prospective
cohort studies have reported that PA reduces the risk of type 2 diabetes by 30–50% compared
to those who are physically inactive [4]. The current recommendation to prevent type 2
diabetes is PA at least 150 min/week at moderate intensity [5].

PA has been shown to reduce glucose levels and increase insulin sensitivity [6]. A
single bout of exercise enhances skeletal muscle glucose uptake not only via an insulin-
dependent pathway but also via mechanisms that are independent of insulin [6]. To
maintain the beneficial effects of PA, it should be regular, since the effect of a single bout
lasts only about 48 h [5,6]. The effect of PA on insulin secretion is poorly understood [7]. In
many studies, there are also limitations in the methods to measure insulin sensitivity and
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insulin secretion [8]. Conversion to type 2 diabetes occurs when insulin secretion cannot
compensate for insulin resistance in peripheral tissues.

High-throughput metabolomics studies have revolutionized biomarker research. The
present key technologies for metabolomics are mass spectrometry and proton nuclear mag-
netic resonance spectroscopy (NMR). Mass spectrometry plays an increasingly dominant
role in the metabolomics field. It is a highly sensitive method for detection and quantitation,
and can identify hundreds to thousands of metabolites, whereas proton NMR has low
sensitivity and can identify only about 100 metabolites [9].

Previous observational studies on the association of PA with metabolites have often
been small and heterogeneous [10]. Ding et al. published the largest study so far on the
relationship between PA and metabolites including 5197 participants from the Nurses’
Health Study, Nurses’ Health Study II, and the Health Professionals Follow-up Study. They
identified 20 metabolites associated with PA, including two amino acids, four cholesteryl
esters, and eight phosphatidylcholines and lyso-phosphatidylethanolamines [11]. However,
this study did not investigate the association of PA with metabolites in relation to the risk
of type 2 diabetes.

In the present study, we investigated the association of insulin sensitivity, insulin
secretion, and metabolite signature of PA with the risk for type 2 diabetes in a large
prospective population-based cohort in Finland.

2. Materials and Methods
2.1. Subjects

The METabolic Syndrome In Men (METSIM) cohort includes 10,197 Finnish men ran-
domly selected from the population register of Kuopio, Eastern Finland, aged 45–73 years
(58 ± 7 years, mean ± SD) [12]. The current study includes 8749 participants without
diabetes at baseline. Glucose tolerance was evaluated by a 2-h oral glucose tolerance test
according to the ADA criteria [13]. At baseline, 3034 (29.8%) of all participants had nor-
mal glucose tolerance, 4344 (42.6%) had isolated impaired fasting glucose, 312 (3.1%) had
isolated impaired glucose tolerance, 1059 (10.3%) had both impaired fasting glucose and
impaired glucose tolerance, and 1437 (14.1%) had diabetes. We excluded from statistical
analyses participants with type 1 diabetes (n = 25) and type 2 diabetes at baseline (n = 1412)
and participants having missing data from an oral glucose tolerance test (n = 11). We
identified 1153 incident cases of type diabetes after a mean of 7.8-year follow-up. Type 2
diabetes diagnosis was based on fasting plasma glucose ≥7.0 mmol/L, 2-h plasma glucose
≥11.1 mmol/L, glycated hemoglobin (HbA1c) ≥6.5% (≥48 mmol/mol) or antidiabetic
medication started between the baseline and the follow-up visits.

2.2. Physical Activity Questionnaire and Other Lifestyle Factors

We evaluated leisure-time PA at baseline and follow-up visits by a questionnaire
used in the Mini-Finland Health Survey [14]. The questionnaire measures frequency and
duration of PA on a 4-point scale. The category PA1 means little or no PA, PA2 physical
activity in context of other hobbies or physical activity occasionally, PA3 at least 30 min of
physical activity regularly ≤2 times a week, and PA4 at least 30 min of physical activity
regularly ≥3 times a week. The physically inactive group (PA-) includes the PA1 and PA2
categories and the physically active group (PA+) includes the PA3 and PA4 categories. We
generated three categories for PA changes during the follow-up compared to the baseline
study: an increase of PA (PAInc), a decrease of PA (PADec), and no change in PA (PA0).

2.3. Clinical and Laboratory Measurements

Measurements of height and weight have been described previously [12]. An oral glu-
cose tolerance test was performed (75 g glucose) and blood samples were collected at 0, 30,
and 120 min to measure plasma glucose and insulin concentrations. We recorded informa-
tion about alcohol consumption (g/week) and smoking. Plasma glucose concentration was
determined using an enzymatic hexokinase photometric assay (Konelab Systems reagents,



Metabolites 2022, 12, 69 3 of 12

Thermo Fisher Scientific; Vantaa, Finland). Insulin was assessed by immunoassay (ADVIA
Centaur Insulin IRI no. 02230141; Siemens Medical Solutions Diagnostics, Tarrytown, NY,
USA).

2.4. Measurement of Metabolites

Non-targeted metabolomics profiling was performed at Metabolon, Inc. (Durham, NC,
USA) on EDTA-plasma samples obtained after an overnight fast. Briefly, methanol extrac-
tion of biochemicals followed by a non-targeted relative quantitative liquid chromatography–
tandem mass spectrometry (LC-MS/MS) Metabolon DiscoveryHD4 platform was applied
to assay 1260 named metabolites from 7271 participants. Samples were randomized across
batches. Batches contained ~144 METSIM samples and 20 well-characterized human-EDTA
plasma samples for quality control. All samples were processed together for peak quantifi-
cation and data scaling. We quantified raw mass spectrometry peaks for each metabolite
using the area under the curve and evaluated overall process variability by the median rela-
tive standard deviation for endogenous metabolites present in all 20 technical replicates in
each batch. We adjusted for variation caused by day-to-day instrument tuning differences
and columns used for biochemical extraction by scaling the raw peak quantification to the
median for each metabolite by the Metabolon batch.

2.5. Calculations

The Matsuda insulin sensitivity index (Matsuda ISI) was calculated as previously re-
ported [15,16], and the insulin secretion index (InsAUC0–30 /GluAUC0–30) was calculated
as follows (insulin at 0 min + insulin at 30 min)/(glucose at 0 min + glucose at 30 min). We
have previously validated Matsuda ISI as the most reliable index for insulin sensitivity
compared with the M value of the euglycemic hyperinsulinemic clamp, and InsAUC0–
30/GluAUC0–30 as the most reliable marker of insulin secretion, as compared with insulin
secretion during a frequently sampled intravenous glucose tolerance test [12]. We calcu-
lated the disposition index (DI), a measure of insulin secretion adjusted for prevailing
insulin sensitivity, as Matsuda ISI × (InsAUC0–30/GluAUC0–30) [12].

2.6. Statistical Analyses

We performed statistical analyses using IBM SPSS, version 27 (IBM Corp., Armonk,
NY, USA). We logarithmically transformed all variables due to their skewed distributions,
except for age and follow-up time. We used one-way ANOVA to assess the differences in
clinical traits and metabolites between the (PA−) and the (PA+) groups. We examined the
associations of PA with glucose and insulin concentrations, insulin sensitivity, and insulin
secretion at baseline with linear regression adjusted for age, smoking (current smoker
vs. non-smoker), alcohol consumption, and body mass index (BMI). In prospective linear
regression analyses we adjusted for age, corresponding metabolic trait at baseline, follow-
up time (in months), BMI, smoking, and alcohol consumption. We applied Cox regression
to investigate the association of PA with incident type 2 diabetes after adjustment for age,
BMI, smoking, and alcohol consumption.

3. Results
3.1. Baseline Clinical and Laboratory Characteristics of the Participants in the Categories of
Physical Activity

BMI, smoking, and alcohol consumption were significantly lower in participants in
the physically active groups (PA4, PA3) than in the physically inactive groups (PA2, PA1)
(Table 1).
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Table 1. Baseline clinical characteristics of the participants of the METSIM study without diabetes (n
= 8749) in the categories of physical activity (PA).

Leisure-Time Physical Activity Categories

PA1
(n = 537)

PA2
(n = 2517)

PA3
(n = 1498)

PA4
(n = 4197)

All
(n = 8749)

Variables Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD p-Value
Age, years 57.1 ± 6.9 57.4 ± 7.0 56.0 ± 6.7 57.5 ± 7.2 57.2 ± 7.1 <0.001

BMI, kg/m2 29.1 ± 5.6 27.4 ± 4.0 27.1 ± 3.8 26.1 ± 3.2 26.8 ± 3.8 <0.001
Waist, cm 104.5 ± 14.0 100.0 ± 10.7 98.1 ± 10.3 94.8 ± 9.2 97.4 ± 10.6 <0.001

Total alcohol
consumption, g/wk 132.0 ± 187.0 103.0 ± 139.0 98.0 ± 114.0 89.0 ± 116.0 97.0 ± 129.0 <0.001

Current smokers, % 36.5 24.1 16.8 12.9 18.2 <0.001

Data are mean ± SD, current smoking %. p values comparing PA over the four PA groups were calculated by a
one-way ANOVA, and smoking by a χ2 test. p < 0.010 is statistically significant given five variables included in
the analyses. PA1 = physical activity a little or none, PA2 = physical activity in context of other hobbies or physical
activity occasionally, PA3 = physical activity regularly ≤2 times a week at least 30 min at a time, PA4 = physical
activity regularly ≥3 times a week at least 30 min at a time.

At baseline, fasting and 2 h glucose and insulin concentrations were significantly
decreased, and insulin sensitivity (Matsuda ISI) and insulin secretion (Disposition index)
was significantly increased in the highest (PA3, PA4) PA categories (Table 2). After the
adjustments for confounding variables, the difference in fasting glucose across the PA
categories lost its statistical significance.

Table 2. Baseline characteristics of glucose and insulin concentrations, insulin sensitivity, and insulin
secretion in the METSIM study in the categories of physical activity (PA) (n = 8749).

Physical
Activity PA1 PA2 PA3 PA4 Unadjusted p Adjusted p *

Fasting glucose 5.79 ± 0.53 5.75 ± 0.48 5.73 ± 0.48 5.68 ± 0.47 <0.001 0.030
2-h glucose 6.54 ± 1.90 6.20 ± 1.71 6.08 ± 1.69 5.88 ± 1.62 <0.001 <0.001

Fasting insulin 11.50 ± 8.99 9.08 ± 6.50 8.49 ± 5.94 7.22 ± 4.58 <0.001 <0.001
2-h insulin 75.29 ± 68.44 57.99 ± 56.28 54.57 ± 54.53 44.42 ± 44.97 <0.001 <0.001

Matsuda ISI 5.32 ± 3.97 6.26 ± 3.92 6.70 ± 4.08 7.58 ± 4.21 <0.001 <0.001
DI 151.6 ± 74.2 157.8 ± 68.6 161.5 ± 69.1 169.2 ± 74.0 <0.001 <0.001

Abbreviations: ISI, insulin sensitivity index; DI, disposition index; p-values were calculated using linear regression.
p < 0.008 is statistically significant given six variables included in analyses. * Adjusted for age, smoking, alcohol
consumption, and BMI at baseline. Physical activity categories as in Table 1.

3.2. Physical Activity and Incident Type 2 Diabetes

In unadjusted statistical analysis increased PA was associated with a decreased risk of
type 2 diabetes (PA3, HR 0.70, 95% confidence intervals, CI, 0.55, 0.89, p = 0.004; PA4, HR
0.61, 95% CI, 0.49, 0.75), p < 0.001). After the adjustment for age, BMI, smoking, and alcohol
consumption, the association with the risk of type 2 diabetes was non-significant (Table 3).

Table 3. The association of baseline PA with incident type 2 diabetes. The mean length of the
follow-up time was 7.8 years.

Unadjusted Adjusted *

Physical Activity
Category Total (n = 8749) Incident Diabetes,

(n = 1151) HR 95% CI p HR 95% CI p *

PA1 537 102 (19.0%) 1.00 1.00
PA2 2517 401 (15.9%) 0.87 0.70, 1.08 0.213 1.15 0.92, 1.44 0.22
PA3 1498 204 (13.6%) 0.70 0.55, 0.89 0.004 1.03 0.81, 1.31 0.82
PA4 4195 444 (10.6%) 0.61 0.49, 0.75 <0.001 0.99 0.79, 1.24 0.93

* Adjusted for age, BMI, smoking, and alcohol consumption. Physical activity categories as in Table 1.
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3.3. PA Changes during the Follow-Up

A total of 50% of the follow-up participants at baseline and 60% at follow-up reported
engaging in PA at least 90 min per week (category PA4). Of the participants at follow up,
27% increased their PA (PAInc, n = 1597), 55% did not change (PA0, n = 3230), and 18%
decreased their PA (PADec, n = 1040). The majority (78%) of those who belonged to the
highest activity category (PA4) at baseline did not change their PA. Of those who had no or
little PA (category PA1) at baseline (5%), 29% did not change PA, 43% increased PA by one
level (category PA2), 7% increased PA by two levels (category PA3) and 21% increased PA
by three levels (PA4) during the follow-up.

3.4. Association of PA Changes with Glucose and Insulin Concentrations, Insulin Sensitivity, and
Insulin Secretion at the Follow-Up

Participants who decreased their PA had a significant increase in their fasting and
2 h glucose, fasting insulin, and 2 h insulin concentrations and a decrease in their insulin
sensitivity and insulin secretion compared to those who did not change their PA (Figure 1).
Participants who increased their PA had a significant decrease in fasting glucose and insulin
concentrations and an increase in insulin sensitivity and insulin secretion.

Metabolites 2022, 12, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 1. The association of physical activity (PA) changes with glucose and insulin concentrations, 
insulin sensitivity, and insulin secretion in 5867 participants without diabetes at baseline, subjected 
to oral glucose tolerance tests both at baseline and follow-up visits. The effect sizes (β, SE) are given 
as the standardized mean differences for participants who decreased their PA (PADec) or increased 
their PA (PAInc) compared to the reference category of no changes in their PA (PA0). The p-values 
were adjusted for age, follow-up time, corresponding metabolic trait at baseline, BMI, smoking, 
alcohol consumption, and PA at baseline. 

3.5. Metabolites Associated with Physical Activity 
Figure 2 shows the metabolite groups significantly associated with PA. 

Glycerophospholipids (28%), amino acids (15%), and glycerolipids (8%) were the most 
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glycerophospholipids phosphatidylcholines (39%), lysophosphatidylcholines (22%), and 
choline plasmalogens (9%) were the most frequent metabolites associated with PA.  

Figure 1. The association of physical activity (PA) changes with glucose and insulin concentrations,
insulin sensitivity, and insulin secretion in 5867 participants without diabetes at baseline, subjected to
oral glucose tolerance tests both at baseline and follow-up visits. The effect sizes (β, SE) are given as
the standardized mean differences for participants who decreased their PA (PADec) or increased their
PA (PAInc) compared to the reference category of no changes in their PA (PA0). The p-values were
adjusted for age, follow-up time, corresponding metabolic trait at baseline, BMI, smoking, alcohol
consumption, and PA at baseline.
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3.5. Metabolites Associated with Physical Activity

Figure 2 shows the metabolite groups significantly associated with PA. Glycerophos-
pholipids (28%), amino acids (15%), and glycerolipids (8%) were the most common metabo-
lite groups associated with an increase in PA. Among glycerophospholipids phosphatidyl-
cholines (39%), lysophosphatidylcholines (22%), and choline plasmalogens (9%) were the
most frequent metabolites associated with PA.
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Figure 2. Metabolite groups having statistically significant difference between participants with
high physical activity and participants with low physical activity. Abbreviations: GPL, glycerophos-
pholipids; Lyso-PC, lysophosphatidylcholine; Lyso-PL-Cho, lysoplasmalogen-choline; PC, phos-
phatidylcholine; PE, phosphatidylethanolamine; Pl-Cho, plamalogen-choline; Pl-Eth, plasmalogen-
ethanolamine; PI, phosphatidylinositol.

Figure 3 and Table S1 show the individual metabolites that are significantly associated
with PA. We found 198 metabolites significantly associated with PA. Several of these
metabolites were novel, including especially steroids, amino acids, imidazoles, carboxylic
acids, and hydroxy acids (Table S1). Of these metabolites, steroids and amino acids were
increased and imidazoles, carboxylic acids, and hydroxy acids decreased in the physically
active participants.

We found that participants in the PA+ group had higher levels of choline plasmalogens,
lysophosphatidylcholines, polyunsaturated fatty acids (PUFA), long chain acylcarnitines,
carotenoids, imidazoles, bilirubins, aryl sulfates, hydroxy acids, indolepropionate, and
indolelactate, than participants in the PA− group. Diacylglycerols, monoacylglycerols,
phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, sphingolipids,
bile acids, steroids, short-chain acylcarnitines, gamma-glutamyl-amino acids, glutamate,
creatine, tyrosine, mannose, pyruvate, and lactate were decreased in the PA+ group com-
pared to the PA− group.
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Figure 3. Physically active (PA3 or PA4) participants showed a decrease in fasting and 2 h glucose,
and an increase in insulin sensitivity and insulin secretion compared to physically inactive partic-
ipants. Physically active (PA3 or PA4) participants had increased levels of plasmalogen-cholines,
lysoplasmalogencholines, polyunsaturated fatty acids, carotenoids, long chain acylcarnitines, im-
idazoles, bilirubins, aryl sulfates, hydroxy acids, indolepropionate, and indolelactate, and lower
levels of diacylglycerols, monoacylglycerols, phosphatidylcholines, phosphatidylethanolamines,
phosphatidylinositols, sphingolipids, bile acids, steroids, short-chain acyl carnitines, γ-glutamyl-
amino acids, N-acyl-L-α-amino acids, glutamate, creatine, tyrosine, aspartate, mannose, pyruvate,
and lactate than physically inactive participants.

4. Discussion

Our results based on the large randomly selected population-based METSIM cohort
showed that increased leisure-time PA was associated with a lower incidence of type 2
diabetes and increased insulin sensitivity and insulin secretion. Importantly, the metabolite
signature of PA was significantly different between the PA+ and PA− groups.

Increased leisure-time PA decreases the conversion to type 2 diabetes based on several
observational [4] and lifestyle intervention studies [17–20]. In the Finnish Diabetes Pre-
vention study, PA of at least 2.5 h/week reduced the risk of type 2 diabetes by 62% in the
intervention group but only 46% in the control group [21]. The results of our population-
based study were quite similar, because in the participants engaging in PA at comparable
activity level the conversion to type 2 diabetes was reduced by 39%. In the participants
engaging in PA ≤ 2 times a week, the preventive effect was 30%.

We applied a questionnaire previously validated in the Mini-Finland Health Survey to
measure PA [14]. The participants were divided into four categories based on the frequency
of leisure-time PA. We found that fasting and 2-h glucose and insulin concentrations
decreased significantly and linearly from the lowest to the highest PA category. Similar
beneficial linear trends were also observed in BMI, alcohol consumption and smoking,
suggesting that PA reflects other actions promoting a healthy lifestyle [14].

In our study, insulin sensitivity (Matsuda ISI) and insulin secretion (Disposition index)
increased linearly across the PA categories at baseline. We also showed that an increase in
PA during the follow-up decreased fasting and 2-h glucose levels, and increased insulin
sensitivity and insulin secretion compared to participants who did not increase their PA.
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Several studies have reported positive effects of aerobic exercise, resistance training, and
their combination on insulin sensitivity [22–25], but the results with respect to insulin
secretion have not been consistent across the studies. In the Diabetes Prevention Program,
both decreased insulin sensitivity and insulin secretion were independently associated
with the conversion to type 2 diabetes [26], but in other studies, the role of insulin secretion
has remained unclear [27]. The validity of the measurement of insulin sensitivity and
insulin secretion is crucial for obtaining reliable results. We measured insulin sensitivity
and insulin secretion using validated methods [12]. Conflicting results on the role of PA in
insulin secretion in previous studies may be due to the use of poor methods to measure
insulin secretion.

We measured the association of 1260 metabolites with PA in 7271 men. Our study is
the largest in size and includes more metabolites than any previous study aiming to charac-
terize the metabolite signature of PA. We found 198 metabolites significantly associated
with PA. Several of these metabolites were novel including especially steroids, amino acids,
imidazoles, carboxylic acids, and hydroxy acids. We found that the participants belonging
to the two highest categories of PA had higher levels of choline plasmalogens, lysophos-
phatidylcholines, PUFAs, carotenoids, bilirubins, indolelactate, and indolepropionate than
participants belonging to the two lowest categories of PA (Figure 3, Table S1). Previous
smaller studies have also reported that choline plasmalogens and lysophosphatidylcholines
are associated with a decreased risk of type 2 diabetes, decreased glucose levels, and
increased insulin sensitivity [28–31]. Similarly, high concentrations of omega-3 and omega-
6 PUFAs [32,33], carotenoids [34], hyperbilirubinemia [35], and indolepropionate have
been associated with reduced risk of type 2 diabetes, and indolepropionate has also been
associated with increased insulin secretion [36].

We found that the concentrations of several metabolites, including diacylglycerols,
monoacylglycerols, phosphatidylcholines, phosphatidylethanolamines, phosphatidylinosi-
tols, sphingolipids, bile acids, and short-chain acylcarnitines, were decreased in the par-
ticipants in the two highest PA groups. Our findings were largely novel, but elevated
concentrations of diacylglycerols and phosphatidylethanolamines have been previously
reported to increase the risk of type 2 diabetes [30]. Gamma-glutamyl-amino acids, N-
acyl-L-alpha-amino acids, glutamate, creatine, tyrosine, aspartate, mannose, and glycolysis
metabolites (lactate and pyruvate) were also decreased in the two highest PA groups
compared to the two lowest PA groups.

High concentrations of ceramides, which belong to the sphingolipid class, induce
lipotoxicity and insulin resistance and are associated with increased risk of type 2 dia-
betes [37]. Elevated concentrations of short-chain acylcarnitines have been linked to insulin
resistance [38]. A bile acid, glycodeoxycholic acid, has been associated with increased
risk of type 2 diabetes [39]. Our previous study based on the METSIM cohort showed
that tyrosine, aspartate, and glutamate were significantly associated with decreases in
insulin sensitivity and insulin secretion and consequently with increased risk of type 2
diabetes [15]. Mannose is deposited as glycogen in the liver, and we have shown that a
high mannose concentration increases the risk of type 2 diabetes [40].

Several metabolites associated with high PA were also associated with diet in previous
publications (Figure 2). Bouchard-Mercier et al. reported that a Western diet was associated
with short-chain acylcarnitines, whereas a prudent diet (high in vegetables, fruits, and
whole-grain products) was associated with medium- to long-chain acylcarnitines [41].
A healthy diet, including whole grains, fatty fish, and bilberries (Vaccinium myrtillus)
increases PUFA levels [42]. Carotenoid concentrations correlate with self-reported dietary
intake of carotenoids and also with a decreased risk of type 2 diabetes [43]. Bile acid
concentrations are also influenced by diet. A study by Sonne et al. showed that a high
fat meal increased concentrations of bile acids [44]. Meikle et al. reported that men who
consumed dairy fat had significantly increased lipids, including phosphatidylcholines,
phosphatidylethanolamines, and phosphatidylinositols [45].
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In summary, we found that the participants in the PA+ group had a healthier metabo-
lite profile and lower risk of type 2 diabetes than participants in the PA− group. These
results are consistent with previous studies showing that a healthy diet is associated with
a metabolite signature similar to high PA. Beyond PA, dietary modification is another
very important lifestyle change for subjects with the metabolic syndrome that has been
shown to significantly decrease their risk of cardiovascular diseases [46]. Importantly, the
metabolites differing between the two PA groups are dependent not only on diet but also on
gut microbiota. About 70% of choline, which is the building block of phosphatidylcholines,
lyso-phosphatidylcholines, and choline plasmalogens, is obtained from the diet [47] and
is modulated by microbiota in the gut [48]. Similarly, diet and gut microbiota modulate
PUFAs, acylcarnitines, carotenoids, tryptophan (precursor of indolelactate and indolepro-
pionate) and bile acids [49]. Both PA and diet affect gut microbiota composition, and
result in different metabolic profiles [50]. Our findings emphasize the importance of novel
biomarkers for the management and treatment of the metabolic syndrome [51].

The strengths of our study are the large METSIM cohort, large number of cases with
incident type 2 diabetes, and a long follow-up period. We measured insulin sensitivity and
insulin secretion with the best surrogate markers available. Additionally, we measured
1290 metabolites from 7271 participants, indicating that our study had an excellent power
to obtain reliable results on the association of PA with metabolites. As far as we know,
our study is the largest population-based study investigating the association of PA with
metabolite signature.

We acknowledge certain limitations of our study. Measurements of PA in our study
was self-reported, and the questionnaire included only questions on the frequency and
duration of PA. No information about the intensity (light, moderate, vigorous) or type of
PA was collected. Our questionnaire also lacked separation of those who exercised at the
minimum level recommended to prevent type 2 diabetes, namely at least 150 min a week
of PA [5]. However, although our questionnaire has limitations, self-reported PA correlates
well with objectively measured PA [52], and by using this PA questionnaire we managed
to detect significant differences in glucose levels, insulin sensitivity and insulin secretion
between the PA categories. Further limitations of our study are that all participants were
middle-aged and elderly Finnish men. Therefore, we do not know if our results are valid
among women and in other populations. We were not able to replicate our results in other
populations because large population-based studies having metabolomics data are not
available. Replication of our novel results suggesting that a metabolite signature of PA
includes also steroids, amino acids, imidazoles, carboxylic acids, and hydroxy acids is
especially important.

5. Conclusions

In conclusion, our population-based study shows that a metabolite signature of in-
creased physical activity includes multiple metabolic pathways and is associated with
better adherence to a healthy lifestyle.
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